search

Google
Showing posts with label memory. Show all posts
Showing posts with label memory. Show all posts

Wednesday, April 30, 2008

Random access memory

Random access memory (usually known by its acronym, RAM) is a type of computer data storage. Today it takes the form of integrated circuits that allow the stored data to be accessed in any order, i.e. at random. The word random thus refers to the fact that any piece of data can be returned in a constant time, regardless of its position in the memory bank and whether or not it is related to the previous piece of data.[1]

This contrasts with storage mechanisms such as tapes, magnetic discs and optical discs, which rely on the physical movement of the recording medium or a reading head. In these devices, the movement takes longer than the data transfer, and the retrieval time varies depending on the physical location of the next item.

The word RAM is mostly associated with volatile types of memory (such as DRAM memory modules), where the information is lost after the power is switched off. However, many other types of memory are RAM as well (i.e. Random Access Memory), including most types of ROM and a kind of flash memory called NOR-Flash.

History
The first type of random access memory was the magnetic core memory, developed in 1951, and used in all computers up until the development of the static and dynamic RAM integrated circuits in the late 1960s and early 1970s. Prior to the development of the magnetic core memory, computers used relays or vacuum tubes to perform memory functions.


[edit] Overview

[edit] Types of RAM
Modern types of writable RAM generally store a bit of data in either the state of a flip-flop, as in SRAM (static RAM), or as a charge in a capacitor (or transistor gate), as in DRAM (dynamic RAM), EPROM, EEPROM and Flash. Some types have circuitry to detect and/or correct random faults called memory errors in the stored data, using parity bits or error correction codes. RAM of the read-only type, ROM, instead uses a metal mask to permanently enable/disable selected transistors, instead of storing a charge in them.

As both SRAM and DRAM are volatile, other forms of computer storage, such as disks and magnetic tapes, have been used as "permanent" storage in traditional computers. Many newer products such as PDAs and small music players (up to 160 GB in Jan 2008) do not have hard disks, but often rely on flash memory to maintain data between sessions of use; the same can be said about products such as mobile phones, advanced calculators, synthesizers etc; even certain categories of personal computers, such as the OLPC XO-1, Asus Eee PC, and others, have begun replacing magnetic disk with so called flash drives. There are two basic types of flash memory: the NOR type, which is capable of true random access, and the NAND type, which is not; the former is therefore often used in place of ROM, while the latter is used in most memory cards and solid-state drives, due to a lower price.


[edit] Memory hierarchy

One module of 128MB NEC SD-RAMMany computer systems have a memory hierarchy consisting of CPU registers, on-die SRAM caches, external caches, DRAM, paging systems, and virtual memory or swap space on a hard drive. This entire pool of memory may be referred to as "RAM" by many developers, even though the various subsystems can have very different access times, violating the original concept behind the random access term in RAM. Even within a hierarchy level such as DRAM, the specific row, column, bank, rank, channel, or interleave organization of the components make the access time variable, although not to the extent that rotating storage media or a tape is variable. (Generally, the memory hierarchy follows the access time with the fast CPU registers at the top and the slow hard drive at the bottom.)

In most modern personal computers, the RAM comes in easily upgraded form of modules called memory modules or DRAM modules about the size of a few sticks of chewing gum. These can quickly be replaced should they become damaged or too small for current purposes. As suggested above, smaller amounts of RAM (mostly SRAM) are also integrated in the CPU and other ICs on the motherboard, as well as in hard-drives, CD-ROMs, and several other parts of the computer system.


[edit] Swapping
If a computer becomes low on RAM during intensive application cycles, the computer can resort to swapping. In this case, the computer temporarily uses hard drive space as additional memory. Constantly relying on this type of backup memory is called thrashing, which is generally undesirable because it lowers overall system performance. In order to reduce the dependency on swapping, more RAM can be installed.


[edit] Other uses of the term
Other physical devices with read/write capability can have "RAM" in their names: for example, DVD-RAM. "Random access" is also the name of an indexing method: hence, disk storage is often called "random access" because the reading head can move relatively quickly from one piece of data to another, and does not have to read all the data in between. However the final "M" is crucial: "RAM" (provided there is no additional term as in "DVD-RAM") always refers to a solid-state device.


[edit] "RAM disks"
Software can "partition" a portion of a computer's RAM, allowing it to act as a much faster hard drive that is called a RAM disk. Unless the memory used is non-volatile, a RAM disk loses the stored data when the computer is shut down. However, volatile memory can retain its data when the computer is shut down if it has a separate power source, usually a battery.


[edit] Recent developments
Several new types of non-volatile RAM, which will preserve data while powered down, are under development. The technologies used include carbon nanotubes and the magnetic tunnel effect. In summer 2003, a 128 KB magnetic RAM chip manufactured with 0.18 µm technology was introduced. The core technology of MRAM is based on the magnetic tunnel effect. In June 2004, Infineon Technologies unveiled a 16 MB prototype again based on 0.18 µm technology. Nantero built a functioning carbon nanotube memory prototype 10 GB array in 2004. Whether some of these technologies will be able to eventually take a significant market share from either DRAM, SRAM, or flash-memory technology, remains to be seen however.

In 2006, "Solid-state drives" (based on flash memory) with capacities exceeding 150 gigabytes and speeds far exceeding traditional disks have become available. This development has started to blur the definition between traditional random access memory and "disks", dramatically reducing the difference in performance


[edit] Memory wall
The "memory wall" is the growing disparity of speed between CPU and memory outside the CPU chip. An important reason for this disparity is the limited communication bandwidth beyond chip boundaries. From 1986 to 2000, CPU speed improved at an annual rate of 55% while memory speed only improved at 10%. Given these trends, it was expected that memory latency would become an overwhelming bottleneck in computer performance. [2]

Currently, CPU speed improvements have slowed significantly partly due to major physical barriers and partly because current CPU designs have already hit the memory wall in some sense. Intel summarized these causes in their Platform 2015 documentation (PDF):

“First of all, as chip geometries shrink and clock frequencies rise, the transistor leakage current increases, leading to excess power consumption and heat (more on power consumption below). Secondly, the advantages of higher clock speeds are in part negated by memory latency, since memory access times have not been able to keep pace with increasing clock frequencies. Third, for certain applications, traditional serial architectures are becoming less efficient as processors get faster (due to the so-called Von Neumann bottleneck), further undercutting any gains that frequency increases might otherwise buy. In addition, partly due to limitations in the means of producing inductance within solid state devices, resistance-capacitance (RC) delays in signal transmission are growing as feature sizes shrink, imposing an additional bottleneck that frequency increases don't address.”

The RC delays in signal transmission were also noted in Clock Rate versus IPC: The End of the Road for Conventional Microarchitectures which projects a maximum of 12.5% average annual CPU performance improvement between 2000 and 2014. The data on Intel Processors clearly shows a slowdown in performance improvements in recent processors. However, Intel's new processors, Core 2 Duo (codenamed Conroe) show a significant improvement over previous Pentium 4 processors; due to a more efficient architecture, performance increased while clock rate actually decreased.


[edit] Security concerns
Contrary to simple models (and perhaps common belief), the contents of modern SDRAM modules isn't lost immediately when the computer is shutdown, it fades away - a process that takes only seconds at room temperatures, but which can be extended to minutes at low temperatures. As an example, it is therefore possible to get hold of an encryption key if it was stored in ordinary working memory (i.e. the SDRAM modules
read more

Thursday, April 10, 2008

Virtual memory

Virtual memory is a computer system technique which gives an application program the impression that it has contiguous working memory, while in fact it is physically fragmented and may even overflow on to disk storage. Systems which use this technique make programming of large applications easier and use real physical memory (e.g. RAM) more efficiently than those without virtual memory.

Note that "virtual memory" is not just "using disk space to extend physical memory size". Extending memory is a normal consequence of using virtual memory techniques, but can be done by other means such as overlays or swapping programs and their data completely out to disk while they are inactive. The definition of "virtual memory" is based on tricking programs into thinking they are using large blocks of contiguous addresses.

All modern general-purpose computer operating systems use virtual memory techniques for ordinary applications, such as word processors, spreadsheets, multimedia players, accounting, etc. Few older operating systems, such as DOS of the 1980s, or those for the mainframes of the 1960s, had virtual memory functionality - notable exceptions being the Atlas and B5000.

Embedded systems and other special-purpose computer systems which require very fast, very consistent response time do not generally use virtual memory.

Paged virtual memory
Almost all implementations of virtual memory divide the virtual address space of an application program into pages; a page is a block of contiguous virtual memory addresses. Pages are usually at least 4K bytes in size, and systems with large virtual address ranges or large amounts of real memory (e.g. RAM) generally use larger page sizes
[edit] Page tables
Almost all implementations use page tables to translate the virtual addresses seen by the application program into physical addresses (also referred to as "real addresses") used by the hardware to process instructions. Each entry in a page table contains: the starting virtual address of the page; either the real memory address at which the page is actually stored or an indicator that the page is currently held in a disk file (if the system uses disk files to let applications use amounts of virtual memory which exceed real memory).

Systems can have one page table for the whole system or a separate page table for each application. If there is only one, different applications which are running at the same time share a single virtual address space, i.e. they use different parts of a single range of virtual addresses. Systems which use multiple page tables provide multiple virtual address spaces - concurrent applications think they are using the same range of virtual addresses, but their separate page tables redirect to different real addresses.


[edit] Paging
Paging is the process of saving inactive virtual memory pages to disk and restoring them to real memory when required.

Most virtual memory systems enable programs to use virtual address ranges which in total exceed the amount of real memory (e.g. RAM). To do this they use disk files to save virtual memory pages which are not currently active, and restore them to real memory when they are needed. Pages are not necessarily restored to the same real addresses from which they were saved - applications are aware only of virtual addresses. Usually the real memory to which a page is restored contains another virtual memory page which has been used recently, and which must therefore be saved to disk.


[edit] Dynamic address translation
When a CPU fetches an instruction located at a particular virtual address or, while executing an instruction, fetches data from a particular virtual address or stores data to a particular virtual address, the virtual address must be translated to the corresponding physical address. This is done by a hardware component, sometimes called a memory management unit, which looks up the real address (from the page table) corresponding to a virtual address and passes the real address to the parts of the CPU which execute instructions. If the page tables indicate that the virtual memory page is not currently in real memory, the hardware raises a page fault exception (special internal signal) which invokes the paging supervisor component of the operating system (see below).


[edit] Paging supervisor
This part of the operating system creates and manages the page tables. If the dynamic address translation hardware raises a page fault exception, the paging supervisor searches the page file(s) (on disk) for the page containing the required virtual address, reads it into real physical memory, updates the page tables to reflect the new location of the virtual address and finally tells the dynamic address translation mechanism to start the search again. Usually all of the real physical memory is already in use and the paging supervisor must first save an area of real physical memory to disk and update the page table to say that the associated virtual addresses are no longer in real physical memory but saved on disk. Paging supervisors generally save and overwrite areas of real physical memory which have been least recently used, because these are probably the areas which are used least often. So every time the dynamic address translation hardware matches a virtual address with a real physical memory address, it must put a time-stamp in the page table entry for that virtual address.


[edit] Permanently resident pages
All virtual memory systems have memory areas which are "pinned down", i.e. cannot be swapped out to secondary storage, for example:

Interrupt mechanisms generally rely on an array of pointers to the handlers for various types of interrupt (I/O completion, timer event, program error, page fault, etc.). If the pages containing these pointers or the code that they invoke were pageable, interrupt-handling would become even more complex and time-consuming; and it would be especially difficult in the case of page fault interrupts.
The page tables are usually not pageable.
Data buffers that are accessed outside of the CPU, for example by peripheral devices that use direct memory access (DMA) or by I/O channels. Usually such devices and the buses (connection paths) to which they are attached use physical memory addresses rather than virtual memory addresses. Even on buses with an IOMMU, which is a special memory management unit that can translate virtual addresses used on an I/O bus to physical addresses, the transfer cannot be stopped if a page fault occurs and then restarted when the page fault has been processed. So pages containing locations to which or from which a peripheral device is transferring data are either permanently pinned down or pinned down while the transfer is in progress.
Any other kernel or application areas in which operation is very timing dependent and cannot allow the variation in response time which paging causes.

[edit] Virtual=real operation
In MVS, z/OS, and similar OSes, some parts of the systems memory are managed in virtual=real mode, where every virtual address corresponds to a real address. Those are:

interrupt mechanisms
paging supervisor and page tables
all data buffers accessed by I/O channels[citation needed]
application programs which use non-standard methods of managing I/O and therefore provide their own buffers and communicate directly with peripherals (programs that create their own channel command words).
In IBM's early vitrual memory operating systems virtual=real mode was the only way to "pin down" pages. z/OS has 3 modes, V=V (virtual=virtual; fully pageable), V=R and V=F (virtual = fixed, i.e. "pinned down" but with DAT operating)


[edit] Segmented virtual memory
Some systems, such as the Burroughs large systems, do not use paging to implement virtual memory. Instead, they use segmentation, so that an application's virtual address space is divided into variable-length segments. A virtual address consists of a segment number and an offset within the segment.

Memory is still physically addressed with a single number (called absolute or linear address). To obtain it, the processor looks up the segment number in a segment table to find a segment descriptor The segment descriptor contains a flag indicating whether the segment is present in main memory and, if it is, the address in main memory of the beginning of the segment (segment's base address) and the length of the segment. It is checked whether the offset within the segment is less than the length of the segment and, if it isn't, an interrupt is generated. If a segment is not present in main memory, hardware interrupt is raised to the operating system, which may try to read the segment into main memory, or to swap in. The operating system might have to remove other segments (swap out) from main memory in order to make room in main memory for the segment to be read in.

Notably, the Intel 80286 supported similar segmentation scheme as an option, but it was unused by most operating systems.

It is possible to combine segmentation and paging, usually dividing each segment into pages. In systems that combine them, such as Multics and the IBM System/38 and IBM System i machines, virtual memory is usually implemented with paging, with segmentation used to provide memory protection With the Intel 80386 and later IA-32 processors, the segments reside in a 32-bit linear paged address space, so segments can be moved into and out of that linear address space, and pages in that linear address space can be moved in and out of main memory, providing two levels of virtual memory; however, few if any operating systems do so. Instead, they only use paging.

The difference between virtual memory implementations using pages and using segments is not only about the memory division with fixed and variable sizes, respectively. In some systems, e.g. Multics, or later System/38 and Prime machines, the segmentation was actually visible to the user processes, as part of the semantics of a memory model. In other words, instead of a process just having a memory which looked like a single large vector of bytes or words, it was more structured. This is different from using pages, which doesn't change the model visible to the process. This had important consequences.

Segment wasn't just a "page with a variable length", or a simple way to lengthen the address space (as in Intel 80286). In Multics, the segmentation was a very powerful mechanism that was used to provide a single-level virtual memory model, in which there was no differentiation between "process memory" and "file system" - a process' active address space consisted only a list of segments (files) which were mapped into its potential address space, both code and data. It is not the same as the later mmap function in Unix, because inter-file pointers don't work when mapping files into semi-arbitrary places. Multics had such addressing mode built into most instructions. In other words it could perform relocated inter-segment references, thus eliminating the need for a linker completely This also worked when different processes mapped the same file into different places in their private address spaces

[edit] Avoiding thrashing
All implementations need to avoid a problem called "thrashing", where the computer spends too much time shuffling blocks of virtual memory between real memory and disks, and therefore appears to work slower. Better design of application programs can help, but ultimately the only cure is to install more real memory. For more information see Paging.


[edit] History
In the 1940s and 1950s, before the development of a virtual memory, all larger programs had to contain logic for managing two-level storage (primary and secondary, today's analogies being RAM and hard disk), such as overlaying techniques. Programs were responsible for moving overlays back and forth from secondary storage to primary.

The main reason for introducing virtual memory was therefore not simply to extend primary memory, but to make such an extension as easy to use for programmers as possible

Many systems already had the ability to divide the memory between multiple programs (required for multiprogramming and multiprocessing), provided for example by "base and bounds registers" on early models of the PDP-10, without providing virtual memory. That gave each application a private address space starting at an address of 0, with an address in the private address space being checked against a bounds register to make sure it's within the section of memory allocated to the application and, if it is, having the contents of the corresponding base register being added to it to give an address in main memory. This is a simple form of segmentation without virtual memory.

Virtual memory was developed in approximately 1959–1962, at the University of Manchester for the Atlas Computer, completed in 1962 However, Fritz-Rudolf Güntsch, one of Germany's pioneering computer scientists and later the developer of the Telefunken TR 440 mainframe, claims to have invented the concept in 1957 in his doctoral dissertation Logischer Entwurf eines digitalen Rechengerätes mit mehreren asynchron laufenden Trommeln und automatischem Schnellspeicherbetrieb (Logic Concept of a Digital Computing Device with Multiple Asynchronous Drum Storage and Automatic Fast Memory Mode).

In 1961, Burroughs released the B5000, the first commercial computer with virtual memory It used segmentation rather than paging.

Like many technologies in the history of computing, virtual memory was not accepted without challenge. Before it could be implemented in mainstream operating systems, many models, experiments, and theories had to be developed to overcome the numerous problems. Dynamic address translation required a specialized, expensive, and hard to build hardware, moreover initially it slightly slowed down the access to memory There were also worries that new system-wide algorithms of utilizing secondary storage would be far less effective than previously used application-specific ones.

By 1969 the debate over virtual memory for commercial computers was over an IBM research team led by David Sayre showed that the virtual memory overlay system consistently worked better than the best manually controlled systems.

Possibly the first minicomputer to introduce virtual memory was the Norwegian NORD-1. During the 1970s, other minicomputers implemented virtual memory, notably VAX models running VMS.

Virtual memory was introduced to the x86 architecture with the protected mode of the Intel 80286 processor. At first it was done with segment swapping, which became inefficient with larger segments. The Intel 80386 introduced support for paging underneath the existing segmentation layer. The page fault exception could be chained with other exceptions without causing a double fault.